Using Boltz#
This tutorial demonstrates how to use the Boltz-2 model to predict the structure of a molecular complex, including proteins and ligands. We will also show how to request and retrieve predicted binding affinities and other quality metrics.
What you need before getting started#
First, ensure you have an active OpenProtein
session. Then, import the necessary classes for defining the components of your complex.
[1]:
import openprotein
from openprotein.protein import Protein
from openprotein.chains import Ligand
# Login to your session
session = openprotein.connect()
Defining the Molecules#
Boltz-2 can model various molecule types, including proteins, ligands, DNA, and RNA. For this example, we’ll predict the structure of a protein dimer in complex with a ligand.
We will define a dimer and one ligand. When using Boltz models, we can specify that a Protein
is meant to be an oligomer by specifying multiple ids in the chain_id
. In this case, the protein is a dimer since we have ["A", "B"]
.
Note that for affinity prediction, the ligand that is binding must have a single, unique string for its chain_id
.
[2]:
# Define the proteins
proteins = [
Protein(sequence="MVTPEGNVSLVDESLLVGVTDEDRAVRSAHQFYERLIGLWAPAVMEAAHELGVFAALAEAPADSGELARRLDCDARAMRVLLDALYAYDVIDRIHDTNGFRYLLSAEARECLLPGTLFSLVGKFMHDINVAWPAWRNLAEVVRHGARDTSGAESPNGIAQEDYESLVGGINFWAPPIVTTLSRKLRASGRSGDATASVLDVGCGTGLYSQLLLREFPRWTATGLDVERIATLANAQALRLGVEERFATRAGDFWRGGWGTGYDLVLFANIFHLQTPASAVRLMRHAAACLAPDGLVAVVDQIVDADREPKTPQDRFALLFAASMTNTGGGDAYTFQEYEEWFTAAGLQRIETLDTPMHRILLARRATEPSAVPEGQASENLYFQ"),
]
proteins[0].chain_id = ["A", "B"]
# You can also specify the proteins to be cyclic by setting the property
# proteins[0].cyclic = True
# Define the ligand
# We use the three-letter code for S-adenosyl-L-homocysteine (SAH)
# The chain_id 'C' is the "binder" we will reference later.
ligands = [
Ligand(ccd="SAH", chain_id="C")
]
Create MSA for the Protein using Homology Search#
When using Boltz with protein sequences, we need to supply an MSA to help inform the model. Otherwise, we can also explicitly set it to run using single sequence mode. You have to specify protein.msa
either an MSA or to use Protein.single_sequence_mode
.
Here, we will be building an MSA using our platform capabilities. Take note of the syntax here: creating an MSA with a complex uses ColabFold’s syntax of joining sequences with :
.
[3]:
msa_query = []
for p in proteins:
if p.chain_id is not None and isinstance(p.chain_id, list):
for _ in p.chain_id:
msa_query.append(p.sequence.decode())
else:
msa_query.append(p.sequence.decode())
msa = session.align.create_msa(seed=":".join(msa_query))
for p in proteins:
p.msa = msa
# If desired, use single sequence mode to specify no msa
# p.msa = Protein.single_sequence_mode
Predicting the Complex Structure and Affinity#
Now, we can call the fold
method on the Boltz-2 model.
The key steps are:
Access the model via
session.fold.boltz2
.Pass the defined proteins and ligands.
To request binding affinity prediction, include the
properties
argument. This argument takes a list of dictionaries. For affinity, you specify thebinder
, which must match thechain_id
of a ligand you defined.
[4]:
# Request the fold, including an affinity prediction for our ligand.
fold_job = session.fold.boltz2.fold(
proteins=proteins,
ligands=ligands,
properties=[{"affinity": {"binder": "C"}}]
)
fold_job
[4]:
FoldJob(num_records=1, job_id='ab5f4f6f-6acc-4dcb-a008-523fdea02c5b', job_type=<JobType.embeddings_fold: '/embeddings/fold'>, status=<JobStatus.PENDING: 'PENDING'>, created_date=datetime.datetime(2025, 8, 21, 14, 15, 1, 358781, tzinfo=TzInfo(UTC)), start_date=None, end_date=None, prerequisite_job_id=None, progress_message=None, progress_counter=0, sequence_length=None)
The call returns a FoldComplexResultFuture
object immediately. This is a reference to your job running on the OpenProtein platform. You can monitor its status or wait for it to complete.
[5]:
# Wait for the job to finish
fold_job.wait_until_done(verbose=True)
Waiting: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [09:26<00:00, 5.66s/it, status=SUCCESS]
[5]:
True
Retrieving the Results#
Once the job is complete, you can retrieve the various outputs from the future object.
[6]:
# Get the result as a PDB bytestring
result = fold_job.get()
print('\n'.join(result.decode().splitlines()[500:510])) # Print a few lines
ATOM 46 O O . ASN A 1 7 ? -9.37756 -6.15156 -7.90108 1 68.851 ? 7 A 1
ATOM 47 C CB . ASN A 1 7 ? -8.77594 -5.10971 -10.70351 1 68.851 ? 7 A 1
ATOM 48 C CG . ASN A 1 7 ? -8.48088 -3.63107 -10.55621 1 68.851 ? 7 A 1
ATOM 49 O OD1 . ASN A 1 7 ? -8.00682 -3.16609 -9.515 1 68.851 ? 7 A 1
ATOM 50 N ND2 . ASN A 1 7 ? -8.77729 -2.86805 -11.60447 1 68.851 ? 7 A 1
ATOM 51 N N . VAL A 1 8 ? -7.36867 -5.19251 -7.56931 1 78.911 ? 8 A 1
ATOM 52 C CA . VAL A 1 8 ? -7.60041 -4.94319 -6.14561 1 78.911 ? 8 A 1
ATOM 53 C C . VAL A 1 8 ? -7.8049 -3.45969 -5.84513 1 78.911 ? 8 A 1
ATOM 54 O O . VAL A 1 8 ? -7.64426 -3.02562 -4.70211 1 78.911 ? 8 A 1
ATOM 55 C CB . VAL A 1 8 ? -6.46385 -5.52776 -5.2703 1 78.911 ? 8 A 1
Visualize the structure using molviewspec
[7]:
from molviewspec import create_builder
builder = create_builder()
structure = builder.download(url="mystructure.cif")\
.parse(format="mmcif")\
.model_structure()\
.component()\
.representation()\
.color(color="blue")
builder.molstar_notebook(data={'mystructure.cif': result}, width=500, height=400)
pLDDT (predicted Local Distance Difference Test) gives a per-residue confidence score from 0-100.
PAE (Predicted Aligned Error) provides an (1x) N x N matrix of expected error between every pair of residues.
[8]:
# Retrieve the pLDDT scores
plddt_scores = fold_job.plddt
print("pLDDT scores shape:", plddt_scores.shape)
print("First 10 scores:", plddt_scores[0, :10])
# Retrieve the PAE matrix
pae_matrix = fold_job.pae
print("\nPAE matrix shape:", pae_matrix.shape)
pLDDT scores shape: (1, 794)
First 10 scores: [0.53493166 0.57479316 0.6206771 0.6189912 0.65894026 0.6582905
0.68851155 0.7891059 0.873299 0.95369035]
PAE matrix shape: (1, 794, 794)
BoltzAffinity
object containing detailed predictions.[9]:
# Retrieve the affinity prediction
affinity_data = fold_job.affinity
print("Affinity for binder 'C':")
print(f" predicted: {affinity_data.affinity_pred_value}")
print(f" probability: {affinity_data.affinity_probability_binary}")
print(f" per model: {affinity_data.per_model}")
Affinity for binder 'C':
predicted: -1.828442931175232
probability: 0.9927777051925659
per model: {'affinity_pred_value1': -2.108689308166504, 'affinity_probability_binary1': 0.9957777261734009, 'affinity_pred_value2': -1.54819655418396, 'affinity_probability_binary2': 0.9897776246070862}
Next Steps#
You can use examine the predicted structure, or work on binder design with RFdiffusion on our platform. You can save your predicted structure like so:
[10]:
with open("mystructure.cif", "wb") as f:
f.write(result)